Python API
PyIceberg is based around catalogs to load tables. First step is to instantiate a catalog that loads tables. Let's use the following configuration to define a catalog called prod
:
This information must be placed inside a file called .pyiceberg.yaml
located either in the $HOME
or %USERPROFILE%
directory (depending on whether the operating system is Unix-based or Windows-based, respectively) or in the $PYICEBERG_HOME
directory (if the corresponding environment variable is set).
For more details on possible configurations refer to the specific page.
Then load the prod
catalog:
from pyiceberg.catalog import load_catalog
catalog = load_catalog(
"docs",
**{
"uri": "http://127.0.0.1:8181",
"s3.endpoint": "http://127.0.0.1:9000",
"py-io-impl": "pyiceberg.io.pyarrow.PyArrowFileIO",
"s3.access-key-id": "admin",
"s3.secret-access-key": "password",
}
)
If the catalog has not been initialized before, you need to run:
Let's create a namespace:
And then list them:
And then list tables in the namespace:
Create a table
To create a table from a catalog:
from pyiceberg.schema import Schema
from pyiceberg.types import (
TimestampType,
FloatType,
DoubleType,
StringType,
NestedField,
StructType,
)
schema = Schema(
NestedField(field_id=1, name="datetime", field_type=TimestampType(), required=True),
NestedField(field_id=2, name="symbol", field_type=StringType(), required=True),
NestedField(field_id=3, name="bid", field_type=FloatType(), required=False),
NestedField(field_id=4, name="ask", field_type=DoubleType(), required=False),
NestedField(
field_id=5,
name="details",
field_type=StructType(
NestedField(
field_id=4, name="created_by", field_type=StringType(), required=False
),
),
required=False,
),
)
from pyiceberg.partitioning import PartitionSpec, PartitionField
from pyiceberg.transforms import DayTransform
partition_spec = PartitionSpec(
PartitionField(
source_id=1, field_id=1000, transform=DayTransform(), name="datetime_day"
)
)
from pyiceberg.table.sorting import SortOrder, SortField
from pyiceberg.transforms import IdentityTransform
# Sort on the symbol
sort_order = SortOrder(SortField(source_id=2, transform=IdentityTransform()))
catalog.create_table(
identifier="docs_example.bids",
schema=schema,
location="s3://pyiceberg",
partition_spec=partition_spec,
sort_order=sort_order,
)
Load a table
Catalog table
Loading the bids
table:
table = catalog.load_table("docs_example.bids")
# Equivalent to:
table = catalog.load_table(("docs_example", "bids"))
# The tuple syntax can be used if the namespace or table contains a dot.
This returns a Table
that represents an Iceberg table that can be queried and altered.
Static table
To load a table directly from a metadata file (i.e., without using a catalog), you can use a StaticTable
as follows:
from pyiceberg.table import StaticTable
static_table = StaticTable.from_metadata(
"s3://warehouse/wh/nyc.db/taxis/metadata/00002-6ea51ce3-62aa-4197-9cf8-43d07c3440ca.metadata.json"
)
The static-table is considered read-only.
Schema evolution
PyIceberg supports full schema evolution through the Python API. It takes care of setting the field-IDs and makes sure that only non-breaking changes are done (can be overriden).
In the examples below, the .update_schema()
is called from the table itself.
You can also initiate a transaction if you want to make more changes than just evolving the schema:
with table.transaction() as transaction:
with transaction.update_schema() as update_schema:
update.add_column("some_other_field", IntegerType(), "doc")
# ... Update properties etc
Add column
Using add_column
you can add a column, without having to worry about the field-id:
with table.update_schema() as update:
update.add_column("retries", IntegerType(), "Number of retries to place the bid")
# In a struct
update.add_column("details.confirmed_by", StringType(), "Name of the exchange")
Rename column
Renaming a field in an Iceberg table is simple:
with table.update_schema() as update:
update.rename_column("retries", "num_retries")
# This will rename `confirmed_by` to `exchange`
update.rename_column("properties.confirmed_by", "exchange")
Move column
Move a field inside of struct:
with table.update_schema() as update:
update.move_first("symbol")
update.move_after("bid", "ask")
# This will move `confirmed_by` before `exchange`
update.move_before("details.created_by", "details.exchange")
Update column
Update a fields' type, description or required.
with table.update_schema() as update:
# Promote a float to a double
update.update_column("bid", field_type=DoubleType())
# Make a field optional
update.update_column("symbol", required=False)
# Update the documentation
update.update_column("symbol", doc="Name of the share on the exchange")
Be careful, some operations are not compatible, but can still be done at your own risk by setting allow_incompatible_changes
:
with table.update_schema(allow_incompatible_changes=True) as update:
# Incompatible change, cannot require an optional field
update.update_column("symbol", required=True)
Delete column
Delete a field, careful this is a incompatible change (readers/writers might expect this field):
with table.update_schema(allow_incompatible_changes=True) as update:
update.delete_column("some_field")
Table properties
Set and remove properties through the Transaction
API:
with table.transaction() as transaction:
transaction.set_properties(abc="def")
assert table.properties == {"abc": "def"}
with table.transaction() as transaction:
transaction.remove_properties("abc")
assert table.properties == {}
Or, without context manager:
table = table.transaction().set_properties(abc="def").commit_transaction()
assert table.properties == {"abc": "def"}
table = table.transaction().remove_properties("abc").commit_transaction()
assert table.properties == {}
Query the data
To query a table, a table scan is needed. A table scan accepts a filter, columns, optionally a limit and a snapshot ID:
from pyiceberg.catalog import load_catalog
from pyiceberg.expressions import GreaterThanOrEqual
catalog = load_catalog("default")
table = catalog.load_table("nyc.taxis")
scan = table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
limit=100,
)
# Or filter using a string predicate
scan = table.scan(
row_filter="trip_distance > 10.0",
)
[task.file.file_path for task in scan.plan_files()]
The low level API plan_files
methods returns a set of tasks that provide the files that might contain matching rows:
In this case it is up to the engine itself to filter the file itself. Below, to_arrow()
and to_duckdb()
that already do this for you.
Apache Arrow
Requirements
This requires pyarrow
to be installed.
Using PyIceberg it is filter out data from a huge table and pull it into a PyArrow table:
table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_arrow()
This will return a PyArrow table:
pyarrow.Table
VendorID: int64
tpep_pickup_datetime: timestamp[us, tz=+00:00]
tpep_dropoff_datetime: timestamp[us, tz=+00:00]
----
VendorID: [[2,1,2,1,1,...,2,2,2,2,2],[2,1,1,1,2,...,1,1,2,1,2],...,[2,2,2,2,2,...,2,6,6,2,2],[2,2,2,2,2,...,2,2,2,2,2]]
tpep_pickup_datetime: [[2021-04-01 00:28:05.000000,...,2021-04-30 23:44:25.000000]]
tpep_dropoff_datetime: [[2021-04-01 00:47:59.000000,...,2021-05-01 00:14:47.000000]]
This will only pull in the files that that might contain matching rows.
Pandas
Requirements
This requires pandas
to be installed.
PyIceberg makes it easy to filter out data from a huge table and pull it into a Pandas dataframe locally. This will only fetch the relevant Parquet files for the query and apply the filter. This will reduce IO and therefore improve performance and reduce cost.
table.scan(
row_filter="trip_distance >= 10.0",
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_pandas()
This will return a Pandas dataframe:
VendorID tpep_pickup_datetime tpep_dropoff_datetime
0 2 2021-04-01 00:28:05+00:00 2021-04-01 00:47:59+00:00
1 1 2021-04-01 00:39:01+00:00 2021-04-01 00:57:39+00:00
2 2 2021-04-01 00:14:42+00:00 2021-04-01 00:42:59+00:00
3 1 2021-04-01 00:17:17+00:00 2021-04-01 00:43:38+00:00
4 1 2021-04-01 00:24:04+00:00 2021-04-01 00:56:20+00:00
... ... ... ...
116976 2 2021-04-30 23:56:18+00:00 2021-05-01 00:29:13+00:00
116977 2 2021-04-30 23:07:41+00:00 2021-04-30 23:37:18+00:00
116978 2 2021-04-30 23:38:28+00:00 2021-05-01 00:12:04+00:00
116979 2 2021-04-30 23:33:00+00:00 2021-04-30 23:59:00+00:00
116980 2 2021-04-30 23:44:25+00:00 2021-05-01 00:14:47+00:00
[116981 rows x 3 columns]
It is recommended to use Pandas 2 or later, because it stores the data in an Apache Arrow backend which avoids copies of data.
DuckDB
Requirements
This requires DuckDB to be installed.
A table scan can also be converted into a in-memory DuckDB table:
con = table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_duckdb(table_name="distant_taxi_trips")
Using the cursor that we can run queries on the DuckDB table:
print(
con.execute(
"SELECT tpep_dropoff_datetime - tpep_pickup_datetime AS duration FROM distant_taxi_trips LIMIT 4"
).fetchall()
)
[
(datetime.timedelta(seconds=1194),),
(datetime.timedelta(seconds=1118),),
(datetime.timedelta(seconds=1697),),
(datetime.timedelta(seconds=1581),),
]
Ray
Requirements
This requires Ray to be installed.
A table scan can also be converted into a Ray dataset:
ray_dataset = table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_ray()
This will return a Ray dataset:
Dataset(
num_blocks=1,
num_rows=1168798,
schema={
VendorID: int64,
tpep_pickup_datetime: timestamp[us, tz=UTC],
tpep_dropoff_datetime: timestamp[us, tz=UTC]
}
)
Using Ray Dataset API to interact with the dataset:
print(ray_dataset.take(2))
[
{
"VendorID": 2,
"tpep_pickup_datetime": datetime.datetime(2008, 12, 31, 23, 23, 50),
"tpep_dropoff_datetime": datetime.datetime(2009, 1, 1, 0, 34, 31),
},
{
"VendorID": 2,
"tpep_pickup_datetime": datetime.datetime(2008, 12, 31, 23, 5, 3),
"tpep_dropoff_datetime": datetime.datetime(2009, 1, 1, 16, 10, 18),
},
]