Skip to content

schema_conversion

Utility class for converting between Avro and Iceberg schemas.

AvroSchemaConversion

Source code in pyiceberg/utils/schema_conversion.py
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
class AvroSchemaConversion:
    def avro_to_iceberg(self, avro_schema: Dict[str, Any]) -> Schema:
        """Convert an Apache Avro into an Apache Iceberg schema equivalent.

        This expects to have field id's to be encoded in the Avro schema:

            {
                "type": "record",
                "name": "manifest_file",
                "fields": [
                    {"name": "manifest_path", "type": "string", "doc": "Location URI with FS scheme", "field-id": 500},
                    {"name": "manifest_length", "type": "long", "doc": "Total file size in bytes", "field-id": 501}
                ]
            }

        Example:
            This converts an Avro schema into an Iceberg schema:

            >>> avro_schema = AvroSchemaConversion().avro_to_iceberg({
            ...     "type": "record",
            ...     "name": "manifest_file",
            ...     "fields": [
            ...         {"name": "manifest_path", "type": "string", "doc": "Location URI with FS scheme", "field-id": 500},
            ...         {"name": "manifest_length", "type": "long", "doc": "Total file size in bytes", "field-id": 501}
            ...     ]
            ... })
            >>> iceberg_schema = Schema(
            ...     NestedField(
            ...         field_id=500, name="manifest_path", field_type=StringType(), required=False, doc="Location URI with FS scheme"
            ...     ),
            ...     NestedField(
            ...         field_id=501, name="manifest_length", field_type=LongType(), required=False, doc="Total file size in bytes"
            ...     ),
            ...     schema_id=1
            ... )
            >>> avro_schema == iceberg_schema
            True

        Args:
            avro_schema (Dict[str, Any]): The JSON decoded Avro schema.

        Returns:
            Equivalent Iceberg schema.
        """
        return Schema(*[self._convert_field(field) for field in avro_schema["fields"]], schema_id=1)

    def iceberg_to_avro(self, schema: Schema, schema_name: Optional[str] = None) -> AvroType:
        """Convert an Iceberg schema into an Avro dictionary that can be serialized to JSON."""
        return visit(schema, ConvertSchemaToAvro(schema_name))

    def _resolve_union(
        self, type_union: Union[Dict[str, str], List[Union[str, Dict[str, str]]], str]
    ) -> Tuple[Union[str, Dict[str, Any]], bool]:
        """
        Convert Unions into their type and resolves if the field is required.

        Examples:
            >>> AvroSchemaConversion()._resolve_union('str')
            ('str', True)
            >>> AvroSchemaConversion()._resolve_union(['null', 'str'])
            ('str', False)
            >>> AvroSchemaConversion()._resolve_union([{'type': 'str'}])
            ({'type': 'str'}, True)
            >>> AvroSchemaConversion()._resolve_union(['null', {'type': 'str'}])
            ({'type': 'str'}, False)

        Args:
            type_union: The field, can be a string 'str', list ['null', 'str'], or dict {"type": 'str'}.

        Returns:
            A tuple containing the type and if required.

        Raises:
            TypeError: In the case non-optional union types are encountered.
        """
        avro_types: Union[Dict[str, str], List[Union[Dict[str, str], str]]]
        if isinstance(type_union, str):
            # It is a primitive and required
            return type_union, True
        elif isinstance(type_union, dict):
            # It is a context and required
            return type_union, True
        else:
            avro_types = type_union

        if len(avro_types) > 2:
            raise TypeError(f"Non-optional types aren't part of the Iceberg specification: {avro_types}")

        # For the Iceberg spec it is required to set the default value to null
        # From https://iceberg.apache.org/spec/#avro
        # Optional fields must always set the Avro field default value to null.
        #
        # This means that null has to come first:
        # https://avro.apache.org/docs/current/spec.html
        # type of the default value must match the first element of the union.
        if "null" != avro_types[0]:
            raise TypeError("Only null-unions are supported")

        # Filter the null value and return the type
        return list(filter(lambda t: t != "null", avro_types))[0], False

    def _convert_schema(self, avro_type: Union[str, Dict[str, Any]]) -> IcebergType:
        """
        Resolve the Avro type.

        Args:
            avro_type: The Avro type, can be simple or complex.

        Returns:
            The equivalent IcebergType.

        Raises:
            ValueError: When there are unknown types
        """
        if isinstance(avro_type, str) and avro_type in PRIMITIVE_FIELD_TYPE_MAPPING:
            return PRIMITIVE_FIELD_TYPE_MAPPING[avro_type]
        elif isinstance(avro_type, dict):
            if "logicalType" in avro_type:
                return self._convert_logical_type(avro_type)
            else:
                # Resolve potential nested types
                while "type" in avro_type and isinstance(avro_type["type"], dict):
                    avro_type = avro_type["type"]
                type_identifier = avro_type["type"]
                if type_identifier == "record":
                    return self._convert_record_type(avro_type)
                elif type_identifier == "array":
                    return self._convert_array_type(avro_type)
                elif type_identifier == "map":
                    return self._convert_map_type(avro_type)
                elif type_identifier == "fixed":
                    return self._convert_fixed_type(avro_type)
                elif isinstance(type_identifier, str) and type_identifier in PRIMITIVE_FIELD_TYPE_MAPPING:
                    return PRIMITIVE_FIELD_TYPE_MAPPING[type_identifier]
                else:
                    raise TypeError(f"Unknown type: {avro_type}")
        else:
            raise TypeError(f"Unknown type: {avro_type}")

    def _convert_field(self, field: Dict[str, Any]) -> NestedField:
        """Convert an Avro field into an Iceberg equivalent field.

        Args:
            field: The Avro field.

        Returns:
            The Iceberg equivalent field.
        """
        if "field-id" not in field:
            raise ValueError(f"Cannot convert field, missing field-id: {field}")

        plain_type, required = self._resolve_union(field["type"])

        return NestedField(
            field_id=field["field-id"],
            name=field["name"],
            field_type=self._convert_schema(plain_type),
            required=required,
            doc=field.get("doc"),
        )

    def _convert_record_type(self, record_type: Dict[str, Any]) -> StructType:
        """
        Convert the fields from a record into an Iceberg struct.

        Examples:
            >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion
            >>> record_type = {
            ...     "type": "record",
            ...     "name": "r508",
            ...     "fields": [{
            ...         "name": "contains_null",
            ...         "type": "boolean",
            ...         "doc": "True if any file has a null partition value",
            ...         "field-id": 509,
            ...      }, {
            ...          "name": "contains_nan",
            ...          "type": ["null", "boolean"],
            ...          "doc": "True if any file has a nan partition value",
            ...          "default": None,
            ...          "field-id": 518,
            ...      }],
            ... }
            >>> actual = AvroSchemaConversion()._convert_record_type(record_type)
            >>> expected = StructType(
            ...     fields=(
            ...         NestedField(
            ...             field_id=509,
            ...             name="contains_null",
            ...             field_type=BooleanType(),
            ...             required=False,
            ...             doc="True if any file has a null partition value",
            ...         ),
            ...         NestedField(
            ...             field_id=518,
            ...             name="contains_nan",
            ...             field_type=BooleanType(),
            ...             required=True,
            ...             doc="True if any file has a nan partition value",
            ...         ),
            ...     )
            ... )
            >>> expected == actual
            True

        Args:
            record_type: The record type itself.

        Returns: A StructType.
        """
        if record_type["type"] != "record":
            raise ValueError(f"Expected record type, got: {record_type}")

        return StructType(*[self._convert_field(field) for field in record_type["fields"]])

    def _convert_array_type(self, array_type: Dict[str, Any]) -> ListType:
        if "element-id" not in array_type:
            raise ValueError(f"Cannot convert array-type, missing element-id: {array_type}")

        plain_type, element_required = self._resolve_union(array_type["items"])

        return ListType(
            element_id=array_type["element-id"],
            element_type=self._convert_schema(plain_type),
            element_required=element_required,
        )

    def _convert_map_type(self, map_type: Dict[str, Any]) -> MapType:
        """Convert an avro map type into an Iceberg MapType.

        Args:
            map_type: The dict that describes the Avro map type.

        Examples:
            >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion
            >>> avro_field = {
            ...     "type": "map",
            ...     "values": ["null", "long"],
            ...     "key-id": 101,
            ...     "value-id": 102,
            ... }
            >>> actual = AvroSchemaConversion()._convert_map_type(avro_field)
            >>> expected = MapType(
            ...     key_id=101,
            ...     key_type=StringType(),
            ...     value_id=102,
            ...     value_type=LongType(),
            ...     value_required=True
            ... )
            >>> actual == expected
            True

        Returns: A MapType.
        """
        value_type, value_required = self._resolve_union(map_type["values"])
        return MapType(
            key_id=map_type["key-id"],
            # Avro only supports string keys
            key_type=StringType(),
            value_id=map_type["value-id"],
            value_type=self._convert_schema(value_type),
            value_required=value_required,
        )

    def _convert_logical_type(self, avro_logical_type: Dict[str, Any]) -> IcebergType:
        """Convert a schema with a logical type annotation into an IcebergType.

        For the decimal and map we need to fetch more keys from the dict, and for
        the simple ones we can just look it up in the mapping.

        Examples:
            >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion
            >>> avro_logical_type = {
            ...     "type": "int",
            ...     "logicalType": "date"
            ... }
            >>> actual = AvroSchemaConversion()._convert_logical_type(avro_logical_type)
            >>> actual == DateType()
            True

        Args:
            avro_logical_type: The logical type.

        Returns:
            The converted logical type.

        Raises:
            ValueError: When the logical type is unknown.
        """
        logical_type = avro_logical_type["logicalType"]
        physical_type = avro_logical_type["type"]
        if logical_type == "decimal":
            return self._convert_logical_decimal_type(avro_logical_type)
        elif logical_type == "map":
            return self._convert_logical_map_type(avro_logical_type)
        elif logical_type == "timestamp-micros":
            if avro_logical_type.get("adjust-to-utc", False) is True:
                return TimestamptzType()
            else:
                return TimestampType()
        elif (logical_type, physical_type) in LOGICAL_FIELD_TYPE_MAPPING:
            return LOGICAL_FIELD_TYPE_MAPPING[(logical_type, physical_type)]
        else:
            raise ValueError(f"Unknown logical/physical type combination: {avro_logical_type}")

    def _convert_logical_decimal_type(self, avro_type: Dict[str, Any]) -> DecimalType:
        """Convert an avro type to an Iceberg DecimalType.

        Args:
            avro_type: The Avro type.

        Examples:
            >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion
            >>> avro_decimal_type = {
            ...     "type": "bytes",
            ...     "logicalType": "decimal",
            ...     "precision": 19,
            ...     "scale": 25
            ... }
            >>> actual = AvroSchemaConversion()._convert_logical_decimal_type(avro_decimal_type)
            >>> expected = DecimalType(
            ...     precision=19,
            ...     scale=25
            ... )
            >>> actual == expected
            True

        Returns:
            A Iceberg DecimalType.
        """
        return DecimalType(precision=avro_type["precision"], scale=avro_type["scale"])

    def _convert_logical_map_type(self, avro_type: Dict[str, Any]) -> MapType:
        """Convert an avro map type to an Iceberg MapType.

        In the case where a map hasn't a key as a type you can use a logical map to still encode this in Avro.

        Args:
            avro_type: The Avro Type.

        Examples:
            >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion
            >>> avro_type = {
            ...     "type": "array",
            ...     "logicalType": "map",
            ...     "items": {
            ...         "type": "record",
            ...         "name": "k101_v102",
            ...         "fields": [
            ...             {"name": "key", "type": "int", "field-id": 101},
            ...             {"name": "value", "type": "string", "field-id": 102},
            ...         ],
            ...     },
            ... }
            >>> actual = AvroSchemaConversion()._convert_logical_map_type(avro_type)
            >>> expected = MapType(
            ...         key_id=101,
            ...         key_type=IntegerType(),
            ...         value_id=102,
            ...         value_type=StringType(),
            ...         value_required=False
            ... )
            >>> actual == expected
            True

        .. _Apache Iceberg specification:
            https://iceberg.apache.org/spec/#appendix-a-format-specific-requirements

        Returns:
            The logical map.
        """
        fields = avro_type["items"]["fields"]
        if len(fields) != 2:
            raise ValueError(f'Invalid key-value pair schema: {avro_type["items"]}')
        key = self._convert_field(list(filter(lambda f: f["name"] == "key", fields))[0])
        value = self._convert_field(list(filter(lambda f: f["name"] == "value", fields))[0])
        return MapType(
            key_id=key.field_id,
            key_type=key.field_type,
            value_id=value.field_id,
            value_type=value.field_type,
            value_required=value.required,
        )

    def _convert_fixed_type(self, avro_type: Dict[str, Any]) -> FixedType:
        """
        Convert Avro Type to the equivalent Iceberg fixed type.

        - https://avro.apache.org/docs/current/spec.html#Fixed

        Args:
            avro_type: The Avro type.

        Examples:
            >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion
            >>> avro_fixed_type = {
            ...     "name": "md5",
            ...     "type": "fixed",
            ...     "size": 16
            ... }
            >>> FixedType(length=16) == AvroSchemaConversion()._convert_fixed_type(avro_fixed_type)
            True

        Returns:
            An Iceberg equivalent fixed type.
        """
        return FixedType(length=avro_type["size"])

avro_to_iceberg(avro_schema)

Convert an Apache Avro into an Apache Iceberg schema equivalent.

This expects to have field id's to be encoded in the Avro schema:

{
    "type": "record",
    "name": "manifest_file",
    "fields": [
        {"name": "manifest_path", "type": "string", "doc": "Location URI with FS scheme", "field-id": 500},
        {"name": "manifest_length", "type": "long", "doc": "Total file size in bytes", "field-id": 501}
    ]
}
Example

This converts an Avro schema into an Iceberg schema:

avro_schema = AvroSchemaConversion().avro_to_iceberg({ ... "type": "record", ... "name": "manifest_file", ... "fields": [ ... {"name": "manifest_path", "type": "string", "doc": "Location URI with FS scheme", "field-id": 500}, ... {"name": "manifest_length", "type": "long", "doc": "Total file size in bytes", "field-id": 501} ... ] ... }) iceberg_schema = Schema( ... NestedField( ... field_id=500, name="manifest_path", field_type=StringType(), required=False, doc="Location URI with FS scheme" ... ), ... NestedField( ... field_id=501, name="manifest_length", field_type=LongType(), required=False, doc="Total file size in bytes" ... ), ... schema_id=1 ... ) avro_schema == iceberg_schema True

Parameters:

Name Type Description Default
avro_schema Dict[str, Any]

The JSON decoded Avro schema.

required

Returns:

Type Description
Schema

Equivalent Iceberg schema.

Source code in pyiceberg/utils/schema_conversion.py
def avro_to_iceberg(self, avro_schema: Dict[str, Any]) -> Schema:
    """Convert an Apache Avro into an Apache Iceberg schema equivalent.

    This expects to have field id's to be encoded in the Avro schema:

        {
            "type": "record",
            "name": "manifest_file",
            "fields": [
                {"name": "manifest_path", "type": "string", "doc": "Location URI with FS scheme", "field-id": 500},
                {"name": "manifest_length", "type": "long", "doc": "Total file size in bytes", "field-id": 501}
            ]
        }

    Example:
        This converts an Avro schema into an Iceberg schema:

        >>> avro_schema = AvroSchemaConversion().avro_to_iceberg({
        ...     "type": "record",
        ...     "name": "manifest_file",
        ...     "fields": [
        ...         {"name": "manifest_path", "type": "string", "doc": "Location URI with FS scheme", "field-id": 500},
        ...         {"name": "manifest_length", "type": "long", "doc": "Total file size in bytes", "field-id": 501}
        ...     ]
        ... })
        >>> iceberg_schema = Schema(
        ...     NestedField(
        ...         field_id=500, name="manifest_path", field_type=StringType(), required=False, doc="Location URI with FS scheme"
        ...     ),
        ...     NestedField(
        ...         field_id=501, name="manifest_length", field_type=LongType(), required=False, doc="Total file size in bytes"
        ...     ),
        ...     schema_id=1
        ... )
        >>> avro_schema == iceberg_schema
        True

    Args:
        avro_schema (Dict[str, Any]): The JSON decoded Avro schema.

    Returns:
        Equivalent Iceberg schema.
    """
    return Schema(*[self._convert_field(field) for field in avro_schema["fields"]], schema_id=1)

iceberg_to_avro(schema, schema_name=None)

Convert an Iceberg schema into an Avro dictionary that can be serialized to JSON.

Source code in pyiceberg/utils/schema_conversion.py
def iceberg_to_avro(self, schema: Schema, schema_name: Optional[str] = None) -> AvroType:
    """Convert an Iceberg schema into an Avro dictionary that can be serialized to JSON."""
    return visit(schema, ConvertSchemaToAvro(schema_name))

ConvertSchemaToAvro

Bases: SchemaVisitorPerPrimitiveType[AvroType]

Convert an Iceberg schema to an Avro schema.

Source code in pyiceberg/utils/schema_conversion.py
class ConvertSchemaToAvro(SchemaVisitorPerPrimitiveType[AvroType]):
    """Convert an Iceberg schema to an Avro schema."""

    schema_name: Optional[str]
    last_list_field_id: int
    last_map_key_field_id: int
    last_map_value_field_id: int

    def __init__(self, schema_name: Optional[str]) -> None:
        """Convert an Iceberg schema to an Avro schema.

        Args:
            schema_name: The name of the root record.
        """
        self.schema_name = schema_name

    def schema(self, schema: Schema, struct_result: AvroType) -> AvroType:
        if isinstance(struct_result, dict) and self.schema_name is not None:
            struct_result["name"] = self.schema_name
        return struct_result

    def before_list_element(self, element: NestedField) -> None:
        self.last_list_field_id = element.field_id

    def before_map_key(self, key: NestedField) -> None:
        self.last_map_key_field_id = key.field_id

    def before_map_value(self, value: NestedField) -> None:
        self.last_map_value_field_id = value.field_id

    def struct(self, struct: StructType, field_results: List[AvroType]) -> AvroType:
        return {"type": "record", "fields": field_results}

    def field(self, field: NestedField, field_result: AvroType) -> AvroType:
        # Sets the schema name
        if isinstance(field_result, dict) and field_result.get("type") == "record":
            field_result["name"] = f"r{field.field_id}"

        result = {
            "name": field.name,
            "field-id": field.field_id,
            "type": field_result if field.required else ["null", field_result],
        }

        if field.write_default is not None:
            result["default"] = field.write_default  # type: ignore
        elif field.optional:
            result["default"] = None

        if field.doc is not None:
            result["doc"] = field.doc

        return result

    def list(self, list_type: ListType, element_result: AvroType) -> AvroType:
        # Sets the schema name in case of a record
        if isinstance(element_result, dict) and element_result.get("type") == "record":
            element_result["name"] = f"r{self.last_list_field_id}"
        return {"type": "array", "element-id": self.last_list_field_id, "items": element_result}

    def map(self, map_type: MapType, key_result: AvroType, value_result: AvroType) -> AvroType:
        if isinstance(key_result, StringType):
            # Avro Maps does not support other keys than a String,
            return {
                "type": "map",
                "values": value_result,
                "key-id": self.last_map_key_field_id,
                "value-id": self.last_map_value_field_id,
            }
        else:
            # Creates a logical map that's a list of schema's
            # binary compatible
            return {
                "type": "array",
                "items": {
                    "type": "record",
                    "name": f"k{self.last_map_key_field_id}_v{self.last_map_value_field_id}",
                    "fields": [
                        {"name": "key", "type": key_result, "field-id": self.last_map_key_field_id},
                        {"name": "value", "type": value_result, "field-id": self.last_map_value_field_id},
                    ],
                },
                "logicalType": "map",
            }

    def visit_fixed(self, fixed_type: FixedType) -> AvroType:
        return {"type": "fixed", "size": len(fixed_type), "name": f"fixed_{len(fixed_type)}"}

    def visit_decimal(self, decimal_type: DecimalType) -> AvroType:
        return {
            "type": "fixed",
            "size": decimal_required_bytes(decimal_type.precision),
            "logicalType": "decimal",
            "precision": decimal_type.precision,
            "scale": decimal_type.scale,
            "name": f"decimal_{decimal_type.precision}_{decimal_type.scale}",
        }

    def visit_boolean(self, boolean_type: BooleanType) -> AvroType:
        return "boolean"

    def visit_integer(self, integer_type: IntegerType) -> AvroType:
        return "int"

    def visit_long(self, long_type: LongType) -> AvroType:
        return "long"

    def visit_float(self, float_type: FloatType) -> AvroType:
        return "float"

    def visit_double(self, double_type: DoubleType) -> AvroType:
        return "double"

    def visit_date(self, date_type: DateType) -> AvroType:
        return {"type": "int", "logicalType": "date"}

    def visit_time(self, time_type: TimeType) -> AvroType:
        return {"type": "long", "logicalType": "time-micros"}

    def visit_timestamp(self, timestamp_type: TimestampType) -> AvroType:
        # Iceberg only supports micro's
        return {"type": "long", "logicalType": "timestamp-micros", "adjust-to-utc": False}

    def visit_timestamptz(self, timestamptz_type: TimestamptzType) -> AvroType:
        # Iceberg only supports micro's
        return {"type": "long", "logicalType": "timestamp-micros", "adjust-to-utc": True}

    def visit_string(self, string_type: StringType) -> AvroType:
        return "string"

    def visit_uuid(self, uuid_type: UUIDType) -> AvroType:
        return {"type": "fixed", "size": 16, "logicalType": "uuid", "name": "uuid_fixed"}

    def visit_binary(self, binary_type: BinaryType) -> AvroType:
        return "bytes"

__init__(schema_name)

Convert an Iceberg schema to an Avro schema.

Parameters:

Name Type Description Default
schema_name Optional[str]

The name of the root record.

required
Source code in pyiceberg/utils/schema_conversion.py
def __init__(self, schema_name: Optional[str]) -> None:
    """Convert an Iceberg schema to an Avro schema.

    Args:
        schema_name: The name of the root record.
    """
    self.schema_name = schema_name